X^2-2x+(4x/9)=1

Simple and best practice solution for X^2-2x+(4x/9)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2-2x+(4x/9)=1 equation:



X^2-2X+(4X/9)=1
We move all terms to the left:
X^2-2X+(4X/9)-(1)=0
We add all the numbers together, and all the variables
X^2-2X+(+4X/9)-1=0
We get rid of parentheses
X^2-2X+4X/9-1=0
We multiply all the terms by the denominator
X^2*9-2X*9+4X-1*9=0
We add all the numbers together, and all the variables
X^2*9+4X-2X*9-9=0
Wy multiply elements
9X^2+4X-18X-9=0
We add all the numbers together, and all the variables
9X^2-14X-9=0
a = 9; b = -14; c = -9;
Δ = b2-4ac
Δ = -142-4·9·(-9)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{130}}{2*9}=\frac{14-2\sqrt{130}}{18} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{130}}{2*9}=\frac{14+2\sqrt{130}}{18} $

See similar equations:

| 2x-3-4x=-4x+9 | | 8x+24=3x-5 | | 13(7x-3)=-1131 | | 5x-x+6.3=30 | | 4x^2-x+380=0 | | 3m-18=m+6 | | 1/10x+11=3/5x | | -4(4+2z)+12z=44 | | |2x+1|=6x-15 | | (180-x)4=(90-x) | | 57(t−35)=234 | | 2(x+4)+32=3x | | 8x-2x=4.3 | | 3r+6•5=5r-20•9 | | -12(1-4x)=-492 | | 3x^2-8=23x | | 4×m=1 | | 12(10x-11)=468 | | (x)(x+2.5)=21 | | W(x)=13.2+443 | | 5​(x−​5)=4(x+​5) | | 70+9.50x=1000 | | 5x-21=2x+7 | | 5/6=x+9/9 | | -9n-12n=0 | | -10x+9x=7 | | 5x+3x+8=32 | | 5×-2=9+3x | | -15=-11x+6x | | Y=6-4/3(x-1) | | 9+3(4g-5)=42 | | 3(90-x)-18=x |

Equations solver categories